Hello, I'm Me.

I live in a neighborhood.

I am Energy in a bubble.

Energy

My Energy can be **ordered** and move Me.

X + Y (+ Z)

Or **disordered** and evaporate.

B

Or it can be **internal** and follow Me.

W

I have <u>1234</u> rules.

<u>1</u> All My Energy moves with Me.

<u>2</u>

Disorder is always exchanging completely. It is extremely volatile.

<u>3</u>

The *order* of the disorder around Me gives Me *order*.

Go to <u>Shadertoy.com/new</u> And prepare a field simulation :

You should be able to draw white on the screen using the W channel. This will be the internal Energy.

- Energy.xy = X+Y : Ordered Energy
- Energy.b = **B** : **Disordered Energy**
- Energy.w = W : Internal Energy

Apply My first rule.

<u>**1**</u> All My Energy follows Me.

If I look to the past to find My Energy, I should find My Energy not where it is, But where it was. $MeNow_{xy} = Me_{xy} + XY$ $MeThen_{xy} = MeNow_{xy} - XYThen$

Where I was is where I am now **minus** how fast I was going.

I don't know any of that for sure, but I can guess :

(There are better ways to do this)

Apply My second rule

<u>2</u> Free Energy diffuses at the speed of information.

All of My disordered Energy **B** comes from My neighborhood.

Exchange disorder symmetrically in all directions :

Energy.b = (pX.b + pY.b + nX.b + nY.b)/4.0;

Apply My third rule

<u>3</u> The change in volatile Energy **B** across Me will push Me in that direction.

 $\frac{d}{dt} \mathbf{X} = -\frac{d}{d\mathbf{x}} \mathbf{B}$ $\frac{d}{dt} \mathbf{Y} = -\frac{d}{d\mathbf{y}} \mathbf{B}$

Sum the force from each neighbor :

vec2 Force; Force.x = nX.b - pX.b; Force.y = nY.b - pY.b;

Add the average force from all the neighbors to the ordered Energy :

Energy.xy += Force/4.0;

Apply My fourth rule

<u>4</u> The **disorder** in the order around Me enters Me as **disorder**.

 $d/dt \mathbf{B} = -(d/dx \mathbf{X} + d/dy \mathbf{Y})$

B changes by the amount the neighborhood converges on Me.

Add the average convergence to My disordered Energy.

Energy.b +=	(nX.x -	pX.x +	nY.y -	• pY.y)/4.;
-------------	---------	--------	--------	-------------

Last Steps!

Maybe the internal Energy **W** is mass. And maybe there's some gravity.

 $d/dt \mathbf{Y} = -g\mathbf{W}$

Add the force of gravity to the Y Energy

Energy.y -= Energy.w/200.0;

Boundary Conditions

Let's put our fluid in a box and force the velocity at the edges to be zero.

At this point your fluid should work!

If your code doesn't work, maybe try consulting this link with the correct code: <u>Shadertoy.com/view/WtsSz2</u>

Mass Conservation

My **rules** will resist changes in Energy density, but sometimes I do exchange internal Energy **W** with My neighbors and it is important to account for that.

 $d/dt \mathbf{W} = -(d/dx (\mathbf{XW}) + d/dy (\mathbf{YW}))$

Add the average exchange of mass with each neighbor :

Energy.w += (nX.x*nX.w-pX.x*pX.w+nY.y*nY.w-pY.y*pY.w)/4.;